The Essential Steps of Developing a Training Course

Clean Energy Workforce Education Conference

Saratoga, NY
March 9, 2011

Barbara L. Martin, Ph. D.
Course Design and Development

Goals of the Session

- Participants will create some components of a new module or course or improve an existing one using instructional design methods and strategies.

- Develop a positive attitude toward using instructional design
If you were going to design a course..........

What would you do first?

☐ Plan the content for the course?
☐ Figure out who the students are?
☐ Determine what the job requires?
☐ Pick the available media?
☐ Other?
Instructional Systems Design

- the **systematic** design, development, implementation, and evaluation
- of instructional materials, lessons, courses, or curricula
- in order to improve student learning and teaching efficiency (Gentry, 1989)
The **System** in ISD

- a system is
 - a set of related and interdependent components
 - working together to perform some function
The ADDIE Model: An Instructional System

*-- establishes the model as a system
ADDIE: Analyze

-- the process of determining the needs and the goals for the instruction
ADDIE: Design

-- the process of determining the objectives and criterion tests to meet the instructional goals.
ADDIE: Develop

-- the process of constructing and producing the instruction based on the design process.
ADDIE: Implement

-- the process of using the instruction in the setting for which it was planned
ADDIE: Evaluate

Feedback

-- the process of assessing the worth of the instruction as it is being developed (formative evaluation) and after it has been implemented (summative evaluation)
Let’s make this interactive!

Grab a Pencil

Put on your thinking cap

Pick a topic
ADDIE: Analyze

- Analyze
- Design
- Develop
- Implement
- Evaluate

Feedback

- Assess Needs
- Analyze Learners
- Analyze Setting
Is education or training needed?

- The Case of Lucy and Ethel
Training vs. Non-training Solutions

- What problems or opportunities **can** be solved by training?
 - Knowledge, skills, and attitude

- What problems or opportunities **cannot** be solved by training?
 - Equipment, lack of resources (people, $$), policies and procedures
Course Goal

☐ A **course goal** describes what the learners will be able to do at the end of a course.

☐ For example: Participants will include PV solutions in their emergency management plans.
Course Goal

☐ Here’s a template for a course goal:

Students in my course will [your statement here] when the course is over........
Some specific questions asked during a Learner Analysis:

- What *subject matter expertise and previous experience* do the learners have?
- Do they have any *major misconceptions* about the subject matter?
- What are the learner’s *attitudes*?
- Do learner’s have any *special needs or constraints*?
Learner Analysis

- What could you do to help all students learn if you have students in your course who have:
 - Varied backgrounds in the topic you are teaching?
 - Varied backgrounds in reading and math skills
Some key questions to ask:

- **Where** will the instruction be delivered?
- What kind of **facilities and equipment** will be available?
- Is **lab space** available? Sufficient equipment?
- **How many** students will there be?
- Will the course be offered to **groups**? **How often**?
- **Who will implement** the instruction?
Environment and Setting

What kind of **facilities and equipment** are most important for an effective class?

- Instructional?
- Content related?
Summary: Analyze

- Analyze
- Design
- Develop
- Implement
- Evaluate

Feedback

- Assess Needs
- Analyze Learners
- Analyze Setting
ADDIE: Design

- Analyze
- Design
- Develop
- Implement
- Evaluate

Feedback

- Develop Task Analysis
- Write Learning Objectives
- Develop Criterion Tests
Task Analysis:
the process of
breaking a main
task down into
subordinate tasks
NABCEP Task Analyses

- Solar Photovoltaic System Installer
- PV Entry Level Program
- Solar Water and Pool Heating Systems
- Solar Thermal Entry
- Small Wind Energy System Installer
- PV Technical Sales
Task Analysis Example

- Install PV system
 - Configure Electrical system
 - Determine wire sizing
 - Configure mechanical system
 - Select inverter
 - Select roof mount
Rating the Importance of Tasks

<table>
<thead>
<tr>
<th>Consequence of Error</th>
<th>Chance of Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

- **Should be taught**
- **Must be taught**
- **Could be taught**
- **Should be taught**
Learning objectives define in clear terms what the learner will be able to do after the instruction is over.

What does clear mean?
- **observable** and **measurable**

Explain after the instruction is over?
- **after the training** and **back on the job**
Learning objectives – they are as easy to write as A, B, C, D

Audience: who is performing the task

Behavior: what the task or skill is

Conditions: given what resources and/or constraints

Degree: to what standard or criterion; how well or how often
Examples of Objectives

- Notice that objectives are written **CABD**
 - Given an PV array, each learner will install it on the building according to the criteria specified in the checklist.
 - Given the specs for a PV installation, each learner will specify how the array will be installed by answering 8 of 9 questions.

- **Conditions:** Define whether or not you can recreate what the learner will do in the real world when testing in the classroom
Criterion-referenced testing (CRT): the process of writing evaluation items and/or performance checklists to test students’ mastery of the learning objectives.
Ways to Evaluate Learners

- Test Items
- Performances
- Products or work samples
Types of Test Items

Two Primary Types:

- **Selected-response:** Multiple choice, True/False, Matching

- **Constructed-response:** Fill-in-the Blank, Short Answer, Essay
Write Test Items that Transfer

- Situation-based or problem-based stems require *application* of ideas and make very good test items.
- Use graphics, charts, illustrations, pictures, scenarios, examples, dicey problems, case studies, etc.
Checklists

Use a checklist anytime you have to evaluate **multiple** components of a behavior: **Install a solar system**
Criterion-referenced Checklists

☐ Product
☐ Performance

Which one is Product? Performance?
☐ installing the small wind system?
☐ the wind system after it is installed?
Practice Activity: Objectives and Tests/Checklists

- Write a learning objective
- Describe a corresponding test item or checklist

Remember: ABCD
ADDIE: Design

- Analyze
- Design
- Develop
- Implement
- Evaluate

Feedback

Develop Task Analysis
Write Objectives
Develop Criterion Tests
The KEYS to the **Design** phase

- Specify what the students will have to do on the job!
- Test job-related skills, not the recall of facts
ADDIE: Develop

-- the process of producing the instruction based on the design process.
Pratize Nakes Purfect
Practie Make Perfffect
Practice Makes Perfect
ADDIE: Develop

- Design a lesson
- Select the Media
- Plan the “message”
The Way People Learn

- Attend
- Organize
- Code
- Store
- Retrieve
Lesson Design

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduce the topic</td>
<td>Attend/Organize</td>
</tr>
<tr>
<td>2. Present the objective</td>
<td></td>
</tr>
<tr>
<td>3. Present the material</td>
<td>Organize/Code (your strategy)</td>
</tr>
<tr>
<td>4. Show correct performance</td>
<td></td>
</tr>
<tr>
<td>5. Provide practice</td>
<td>Organize/Code/Store (their strategy)</td>
</tr>
<tr>
<td>6. Give feedback</td>
<td></td>
</tr>
<tr>
<td>7. Assess their performance</td>
<td>Retrieve</td>
</tr>
<tr>
<td>8. Provide review and summaries</td>
<td></td>
</tr>
</tbody>
</table>
Use an Advance Organizer: Grid-Connected Systems

- Energy source
- Installing and Wiring the Array
- Utility Interactive Inverter
- Connecting to the Grid
- Energy storage
- Electric utility
- Energy use
Media Selection

- Two Major Principles:
 - There is no one best media for the task: a lot of different media will work.
 - It is always easier to adapt and modify than create from scratch. Use the CASE Method and R & D
Media vs. Message

The *instructional strategy* incorporated into the media is more important than the media itself.

Can the media provide:

* practice
* feedback
* reinforcement
* demonstrations
* cues
* examples
The Show Must Go On!
Summarize and review

- have summaries at the end of each section and each session
- start each session with a review
- ask questions
- students love a review!
Talk to the audience, not the media

They might remember the back of your head!
Move out of the way of the screen so everyone can see.
Showmanship

Motivation

Turn the projector off when:
- you are not using it
- you are changing transparencies/slides
- there is nothing on the screen

(a bright white screen will draw learners’ attention to it)
Paraphrase the message; don’t read it to the audience

- use complementary messages
- uses dual channels (senses)
The ARCS Motivational-Design Model: John Keller

- Get students’ attention
- Make it relevant
- Build confidence in their success
- Reinforce their success
ADDIE: Evaluate

Analyze Design Develop Implement Evaluate

Feedback

Levels of Evaluation Formative Evaluation Summative Evaluation
Levels of Evaluation

Formative Evaluation

Summative Evaluation

Four Levels of Evaluation (Kirkpatrick)

1: Reactions
2: Objectives
3: Transfer
4: Payoff
Formative Evaluation: the process of improving the instruction *BEFORE* it is implemented

3 activities to complete
- self-appraisal
- expert review
- prototype test

Kirkpatrick: Levels 1 & 2
After Formative Evaluation, the instruction is ready to....

Implement!

The Show Must Go On!
Summative Evaluation: the process of assessing the instruction after it has been implemented

- Check off all four of Kirkpatrick’s Levels
 - #1 How did the learner react to the instruction?
 - #2 Did learners meet the objectives?
 - #3 Can learners transfer the learning?
 - #4 Was the institutional need met?
#3 Can learners **transfer** the knowledge and skills?

- Can the learner perform on the job?
 - ☐ If not, why not?

- Does the learner perform the way he was taught?
 - ☐ If not, why not?
ADDIE: Feedback

--Feedback refers to continuous review and evaluation of the instruction. The course design process is dynamic, not static.
Summary: The ADDIE Model

Analyze Design Develop Implement Evaluate

Feedback Loop*

*-- establishes the model as a system
A Few Key Principles to Remember

- Not all problems can be solved by training
- Focus on what the learner must do or know first; how and what you will teach second
- Problem-based tests and lessons are most likely to influence transfer
- It’s a system; components interact
- If they can’t transfer the skills to the workplace, what good is it?
Go Forth and Do Good Training!

Thank you!