Smart Inverters and Interconnection Evolution

Brian Lydic Chief Regulatory Engineer IREC

THE GRID **SMARTER**

State Primer on Adopting the New IEEE 1547-2018 Standard for **Distributed Energy Resources**

MAKING

The California Special

Smart Inverters Today

- Grid Support Utility Interactive" per UL 1741 SA
- Voltage and frequency ride-through (i.e., per CA Rule 21 and/or HECO 14H)
- Anti-islanding with grid support
- Ramp rates (soft start and normal)
- Set PF, volt-var
- Frequency-watt, volt-watt, permit service, limit max power

Also in IEEE 1547-2018

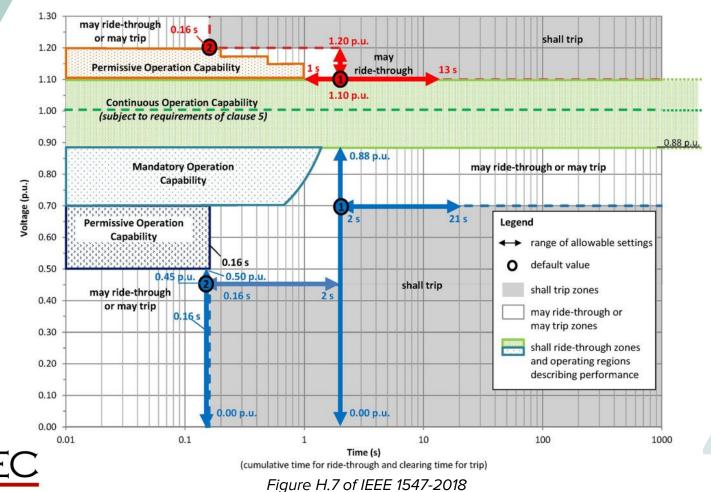
Volt-var autonomous Vref

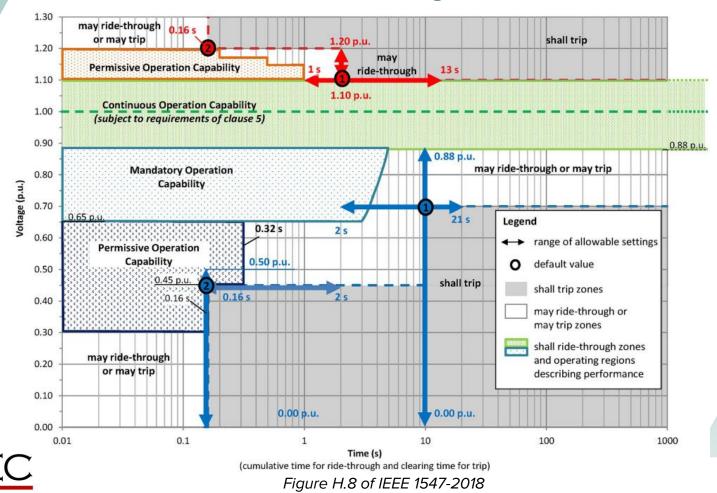
Other voltage regulation modes

ROCOF and phase jump ride-through

Power Quality

Islanding (Microgrids)


Fault current characterization


Bulk System Support (Ride-Through)

Abnormal Performance, Voltage – CAT I

Abnormal Performance, Voltage – CAT II

Abnormal Performance, Voltage – CAT III

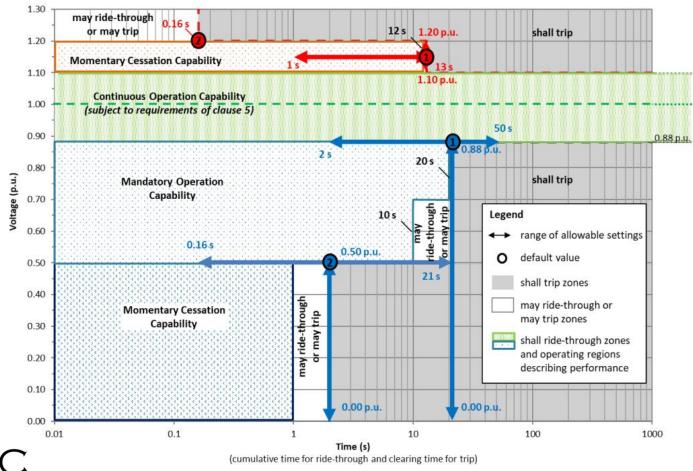
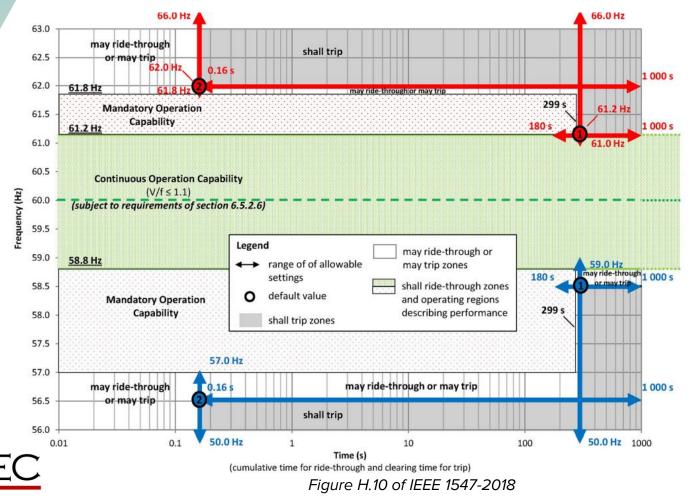
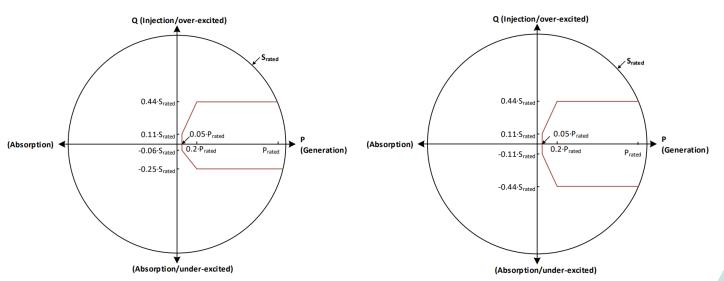



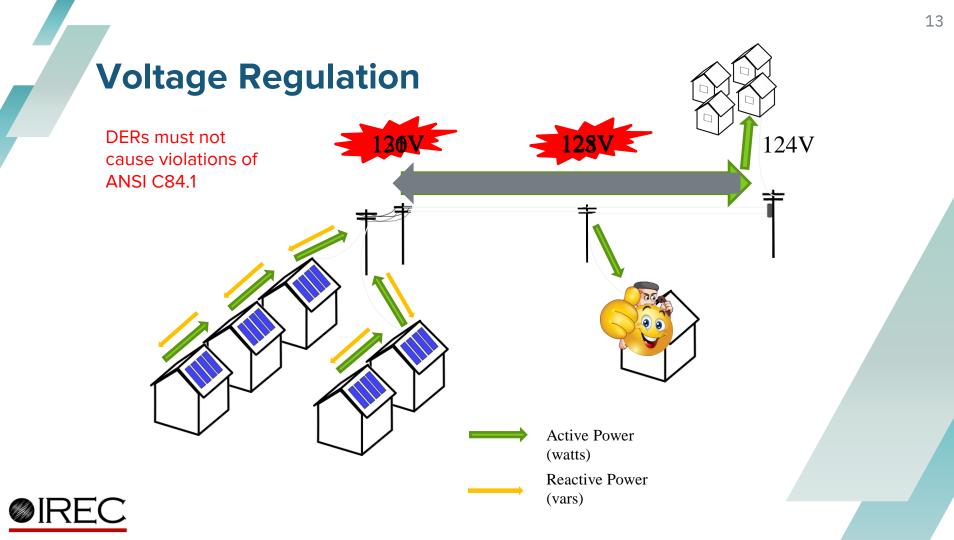
Figure H.1 of IEEE 1547a-2020 (replacing figure H.9 of IEEE 1547-2018)

Abnormal Performance, Frequency – CAT I, II, III



Voltage Regulation

Normal Performance Categories


Cat A

Cat B

Figure H.3 of IEEE 1547-2018: Minimum reactive power capability of Cat A and B DER

Cat A/B sets the stage for voltage and reactive/active power control functions

DER category	Category A	Category B	
Voltage regulation by reactive power control			
Constant power factor mode	Mandatory	Mandatory	
Voltage—reactive power mode ^a	Mandatory	Mandatory	
Active power—reactive power mode ^b	Not required	Mandatory	
Constant reactive power mode	Mandatory	Mandatory	
Voltage and active power control			
Voltage—active power (volt-watt) mode	Not required	Mandatory	
aValtage reactive nerver mode may also be commonly referred to as "yelt yer" mode			

^aVoltage-reactive power mode may also be commonly referred to as "volt-var" mode. ^bActive power-reactive power mode may be commonly referred to as "watt-var" mode.

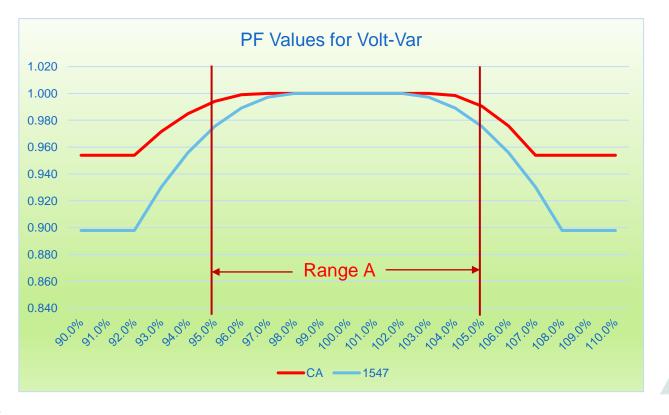
Table 6 of IEEE 1547-2018

Why early adoption of voltage regulation functions?

- Certain DERs can connect to the grid where once they couldn't (w/o upgrades)
- Increase hosting capacity of a circuit
- Functions are optimized if all or most DER systems participate in voltage regulation

Effectiveness dramatically reduced if adopted after higher DER penetration

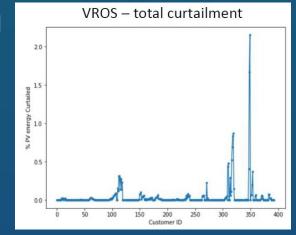
Voltage regulation considerations

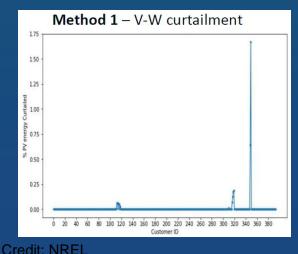

IEEE 1547-2018 default is the constant power factor mode with PF=1

- i.e., no reactive power = no voltage support
- States/utilities to clarify which voltage regulation function DERs should use; adjust from Standard defaults accordingly (state-wide or case-bycase) - states are diverging on this!

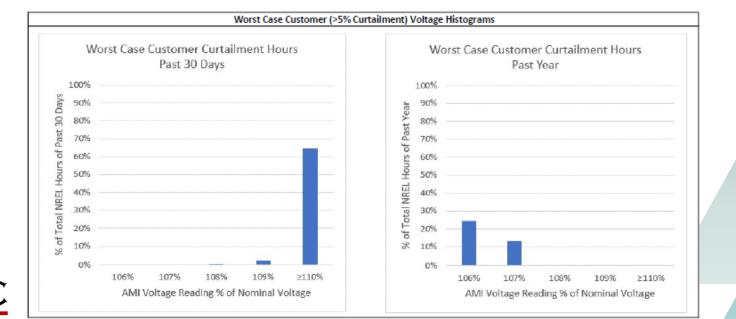
Potential for DER customer impacts

Why settings matter


How will 1547 functions impact the customer?


- Curtailment
 - Headroom loss
 - reactive power functions (most likely de minimis)
 - Curtailment functions
 - volt-watt
 - frequency-watt (most likely de minimis)
 - control (max active power limitation)

- Ensure complaint process handles DER complaints appropriately
- Consider reporting on how many voltage-based curtailment issues arise
- Consider metric based on voltage data to determine potential for curtailment



Summary Results for Utility (or Pending) Mitigations			
NREL Method 1 Estimation of Curtailment %	# of Customers with 1 year Curtailment %	# of Customers with 1 month Curtailment %	
≤ 2%	15		10
> 2% ≤ 4%	0		1
>4%	4		8
Total	19		19

Summary Results for Customer Issues		
NREL Method 1 Estimation of	# of Customers with 1	# of Customers with 1
Curtailment %	year Curtailment %	month Curtailment %
≤ 2%	16	15
> 2% ≤ 4%	2	0
>4%	0	3
Total	18	18

Volt-Watt Curtailment Reports

California Experience

- PG&E (largest IOU) reported only 9 customers with potential yearly curtailment >4%
- Worst yearly potential loss reported was 38.7% (failing distribution transformer)
- Next highest was 7.3%
- It appears true that volt-watt is unlikely to cause widespread curtailment, but individual customers can be highly impacted

Adopting and Implementing Smart Inverters

Adopting IEEE 1547-2018

Where will the technical requirements reside?

Choose categories

Define default function states (or not)

Define default settings (or not)

Determine timeline for implementation

Adopting IEEE 1547-2018

Also:

Communications (capability vs utilization, pathways, protocols)

Process updates (mitigations, settings changes/selection)

Interconnection Agreements

Applications

Related processes (e.g. voltage complaints for DER, HCA)

IREC's Decision Options Matrix

https://irecusa.org/resources/decision-options-matrix-for-ieee-1547-2018-adoption-3/

Normal operating performance category	The selection of A or B will impact the use of voltage regulation controls. Some DER types cannot meet the full scale of reactive power support. Consider specifying category assignment based	DO 3-1: Inverter-based DERs must meet reactive power requirements of 1547-2018 Category B. Rotating DERs must meet Category A, and may meet Category B.	
	on technology type. [MTGS V.A]	DO 3-2: All DER types (inverter-based and rotating) shall meet reactive power requirements of 1547-2018 Category A, and may meet Category B.	
Alternative performance category	If a technology that cannot meet the specified Abnormal or Normal Operating Performance Category, a defined process may be useful for determining if the technology can safely	DO 4-1: Define process for how exceptions to these category assignments are handled (e.g., for an inverter-based technology that cannot meet Category III capabilities).	
	interconnect without unduly impacting grid support requirements.	DO 4-2: Leave process undefined for how exceptions to these category assignments are handled.	
Voltage trip settings	Consider local distribution utility protection practices and make	DO 5-1: Align default settings with 1547.	
and ranges	sure appropriate trip settings are selected. As desired, select default settings or settings within the adjustable range. Trip settings should not hinder ride-through capability required at the transmission level.	DO 5-2: Select other default settings within 1547 ranges of adjustment.	
Frequency trip	Ensure that the under/overfrequency trip settings are	DO 6-1: Align default settings with 1547.	
settings and ranges	coordinated between the utility and transmission operator. As desired, select default settings or settings within the adjustable range. Trip settings should not hinder ride-through capability required at the transmission level.	DO 6-2: Select other default settings within 1547 ranges of adjustment.	
Frequency droop ⁴	This capability is required for all DERs (with some limitations on	DO 7-1: Align default settings with 1547.	
settings	Category I types) during the under/overfrequency conditions. Consider using default settings or adjust within ranges of allowable settings. Consider input from transmission operators or regional reliability coordinator. [MTGS V.A]	DO 7-2: Select other default settings within 1547 ranges of adjustment.	
Voltage regulation	If desired, consider activating a non-unity power factor, volt-var,	DO 8a-1: Adjustable constant power factor is activated.	
modes by reactive	watt-var, or constant var function. See PNNL research on	DO 8a-2: Utilize volt-var without autonomously adjusting V _{ref} .	
power ⁵	autonomously adjusting V _{ref} . ⁶ Also, consider statewide (or	DO 8a-3: Utilize volt-var with autonomously adjusting V _{ref} .	
	similar) default settings for such mode. [MTGS V.B, VI]	DO 8a-4: Watt-var is activated.	
		DO 8a-5: Constant var ⁷ is activated.	
		DO 8b-1: Align default settings with 1547.	

Timeline to compliance

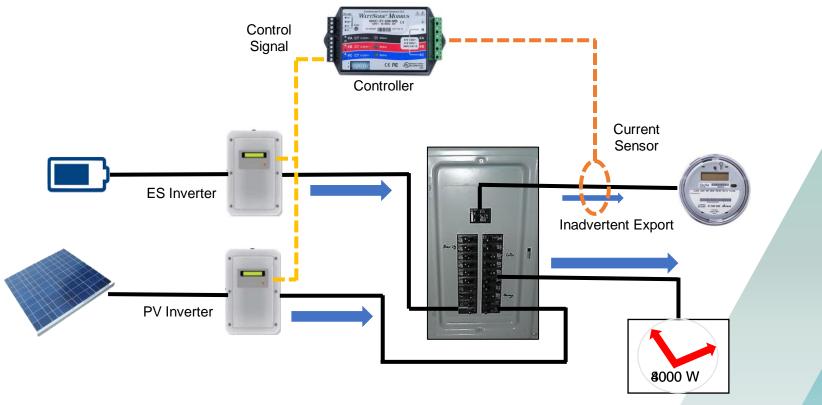
MD: January 1, 2022 ...extending (March 28, 2023 proposed)
HI: January 1, 2022 ...extending (currently February 1, 2023)
MN: "such time the equipment is readily available"
CA: Proposed March 28, 2023
MA, NY: January 1, 2023

Basic Components of Timeline

Testing

- Issuance of Certificate (~1 -2 weeks)
- Qualified Equipment List (1 month ?)
- Shipping logistics (2-6 months, 3 typical)

Adoption Timeline


Chart shows cumulative certifications for each NRTL testing pathways over time. Vertical line represents one year

Export Limitation

How a PCS Works (Sample Configuration)

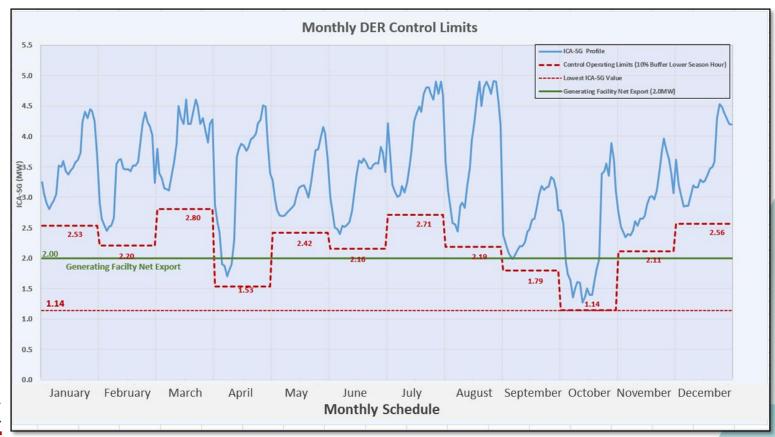
Export –Limiting Flexibility

Limited-Export Storage Basics

- Customers may want to design their storage systems to limit export to:
 - Avoid or reduce grid impacts and the need for costly infrastructure upgrades
 - To take advantage of time of use or other rate structures with differentiated pricing
 - To maximize on-site energy use

New and Requires More Refined Approach

- The concept of limited export has challenged the existing frameworks for both all-export and non-export
- Puts the focus on refining the terminology for the "capacity" that will be evaluated for each technical criteria
- A handful of state rules now recognize limited export, but in most cases this is still limited to a static export value vs. one that is schedule or dynamic.

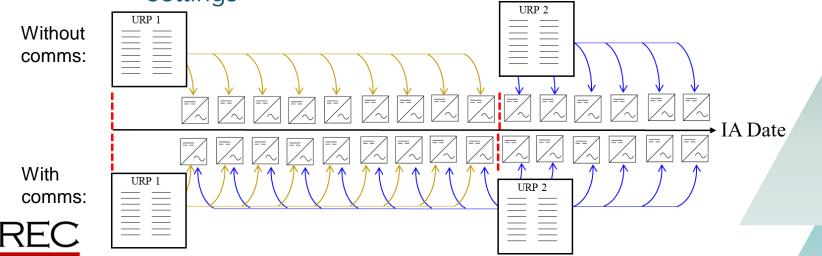

Screens Recommendations for FERC SGIP

Screen	Change	Nameplate	Export
2.1.1.1 Available service	none	n/a	n/a
2.1.1.2 ≤15% of peak rule	Use DER export		Х
New Screen: Inadvertent export	add ∆V <3%*	Х	X
2.1.1.3 if network (spot/area)	Use DER nameplate	Х	
2.1.1.4 ≤10% increase in fault current	Use DER nameplate	Х	
2.1.1.5 <87.5% interrupting capability	Use DER nameplate	Х	
2.1.1.6 Grounding compatibility	Consider inverter DER	n/a	n/a
2.1.1.7 Shared secondary <65% of trans. or <20kW	Use DER export		Х
2.1.1.8 120/240 Unbalance <20% of trans. kVA	Use DER nameplate	Х	
2.1.1.9 Shall not exceed 10 MW	Use DER nameplate	Х	
2.4.4.1 Minimum load screen <100%	Use DER export		Х
2.4.4.2 Voltage and PQ screen	Consider export control	Х	Х
2.4.4.3 Safety and reliability screen	Consider export control	Х	Х

IREC

*Use nameplate rating - export to determine if $\Delta V < 3\%$ as a RVC

Scheduled output



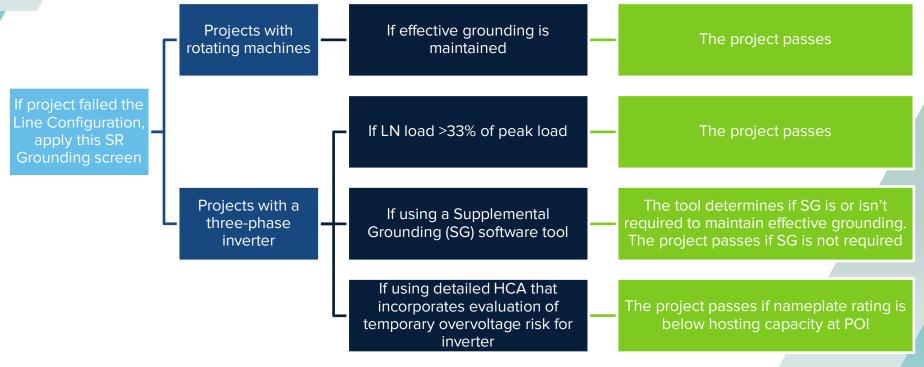
Other Interconnection Issues

Retro-active enablement

- CA found "natural turnover" to be preferred to requiring/stimulating smart inverter updates
- HI intends to only use communications to deploy new settings

Effective Grounding: Inverters vs. Rotating Machines

- Until IEEE C62.92.6, inverters were treated similarly to rotating machines to determine effect on GFOV
- C62.92.6 notes the physical differences, and how grounding does not play the same role
- Ground sources should be treated differently for inverter-based DER



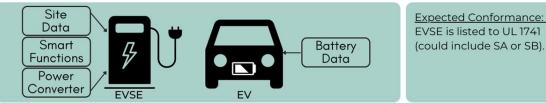
Line Configuration Screen (LCS)

Primary Distribution Line Type	Type of Interconnection to Primary Distribution Line	Result/Criteria
Three-phase, three-wire	3 phase or single phase, phase-to-phase- If ungrounded on primary or any type on secondary	Pass screen
Three-phase, four- wire	Effectively-grounded 3 phase or Single-phase, line- to-neutral- Single-phase line-to-neutral	Pass screen
<u>Three-phase, four-</u> <u>wire (for any line</u> <u>that has sections</u> <u>or mixed three-</u> <u>wire and four-wire)</u>	<u>All others</u>	Pass screen for inverter-based generation if aggregate generation rating is $\leq 100\%$ feeder* minimum load, or $\leq 30\%$ feeder* peak load (if minimum load data isn't available)Pass screen for rotating generation if aggregate generation rating $\leq 33\%$ of feeder* minimum load, or $\leq 10\%$ of feeder* peak load (if minimum load data isn't available)(*or line section)

Grounding Review Within Supplemental Review (SR)

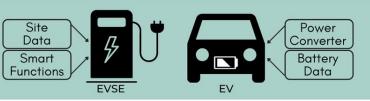
Flicker

- Usually addressed in Supplemental Review and Detailed Study
- Per EPRI, PV doesn't generally introduce flicker
- Flicker screening is "behind the scenes" and assumptions may vary between utilities
- Assumptions are likely very conservative in general
- How should ESS be screened?


Voltage Headroom

- Utilities generally only allow DERs to push voltage to a max of ANSI Range A (105% nominal) at minimum load
- ANSI C84.1 allows for limited excursions into Range B and beyond (which do occur on the distribution system, regardless of DER)
- Utilities have different regulation strategies, resulting in differences in DER hosting capacity
- E.g., load drop compensation, Conservation Voltage Reduction
- Different modeling assumptions may come into play

V2G Configurations

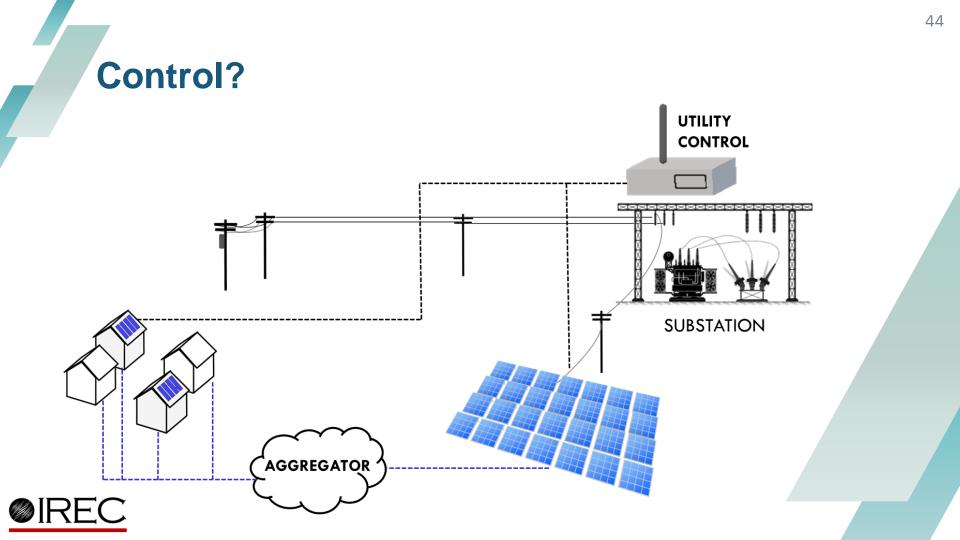

V2G-DC

V2G-AC

V2G-SPLIT INVERTER

Expected Conformance: Not clear yet, however, in practice, the EVSE and EV will need to be tested to IEEE 1547.1.

Expected Conformance:


EVSE is listed to UL 1741

EV is certified to SAE

SC.

J3072.

Create processes that allow review of this grid integration conformance.

Brian Lydic Chief Regulatory Engineer brian@irecusa.org

Presentation template by SlidesCarnival