Transactive Energy Rate Recovery
an equitable approach to recover cost

by
Stephen MacDonald
Managing Director of Business Development
TeMix Inc.

9/30/2022
AGENDA

1. The Energy Rate Recovery Paradigm
2. The Transactive Energy Paradigm-shift
3. The TE Architectural Representation
4. Discussion on the Benefits
5. Open it up for Q&A
The *Energy* Rate Recovery Paradigm

Industry Norms

- The intent of pricing electricity is to recover *all* costs associated with providing *reliable* service; from a *long-run* vantage point.
The *Energy* Rate Recovery Paradigm

Industry Norms

- The intent of pricing electricity is to recover *all* costs associated with providing *reliable* service; from a *long-run* vantage point.

- Traditionally: only certain Parties are allowed to recover costs.
The *Energy* Rate Recovery Paradigm

Industry Norms

➢ The intent of pricing electricity is to recover *all* costs associated with providing *reliable* service; from a *long-run* vantage point.

➢ Traditionally: only certain Parties are allowed to recover costs.

➢ Grid expansion was centric for the most part of the 20th century.
The \textit{Energy} Rate Recovery Paradigm

Industry Norms

- The intent of pricing electricity is to recover \textit{all} costs associated with providing \textit{reliable} service; from a \textit{long-run} vantage point.
- Traditionally: only certain Parties are allowed to recover costs.
- Grid expansion was centric for the most part of the 20th century.
- Assumptions:
 - load growth is predictable, and
 - loads can \textit{only} be controlled locally “behind-the-meter”.
The Energy Rate Recovery Paradigm

Industry Norms

➢ The intent of pricing electricity is to recover all costs associated with providing reliable service; from a long-run vantage point.

➢ Traditionally: only certain Parties are allowed to recover costs.

➢ Grid expansion was centric for the most part of the 20th century.

➢ Assumptions:
 ➢ load growth is predictable, and
 ➢ loads can only be controlled locally “behind-the-meter”.

“Cost of Service” Recovery Methodology
The *Energy* Rate Recovery Paradigm

Industry Norms

- The intent of pricing electricity is to recover *all* costs associated with providing *reliable* service; from a *long-run* vantage point.

- Traditionally: only certain Parties are allowed to recover costs.

- Grid expansion was centric for the most part of the 20th century.

- Assumptions:
 - Load growth is predictable, and
 - Loads can *only* be controlled locally “behind-the-meter”.

“Cost of Service” Recovery Methodology

- Generation Entities (independent or vertically owned “integrated”)
- Transmission System (decoupled)
- The Generator “Supply”
- Procurement (Wholesale)
- Operators (RTOs/ISOs)
The *Energy* Rate Recovery Paradigm

Industry Norms

- The intent of pricing electricity is to recover *all* costs associated with providing *reliable* service; from a *long-run* vantage point.
- Traditionally: only certain Parties are allowed to recover costs.
- Grid expansion was centric for the most part of the 20th century.
- Assumptions:
 - load growth is predictable, and
 - loads can only be controlled locally "behind-the-meter".
The *Energy* Rate Recovery Paradigm

Industry Norms

- The intent of pricing electricity is to recover *all* costs associated with providing *reliable* service; from a long-run vantage point.

- Traditionally: only certain Parties are allowed to recover costs.

- Grid expansion was centric for the most part of the 20th century.

- Assumptions:
 - load growth is predictable, and
 - loads can only be controlled locally “behind-the-meter”.

“Cost of Service” Recovery Methodology
Cost of Service Worked

Fig. 1. Maps showing high-tension electric transmission lines in continental United States, multiple years. (Source: Report on the Status of Interconnected Power Systems, Edison Electric Institute, 1962.)
Cost of Service Worked; However, Change is Now Needed!

Source: TeMix Inc. Energy Internet of Things
The *Transactive Energy* Paradigm-shift

TE Norms

- All Parties who provide grid services can recover costs.
The *Transactive Energy* Paradigm-shift

TE Norms

- All Parties who provide grid services can recover costs.
- Flexible loads **support** secure decoupled management *(via Cloud Computing IT).*
The *Transactive Energy* Paradigm-shift

TE Norms

- All Parties who provide grid services can recover costs.
- Flexible loads support secure decoupled management *(via Cloud Computing IT)*.
- Creates a financial mechanism to speed clean electrified asset adoption.
The **Transactive Energy** Paradigm-shift

TE Norms

- All Parties who provide grid services can recover costs.
- Flexible loads **support** secure decoupled management (via Cloud Computing IT).
- Creates a financial mechanism to speed clean electrified asset adoption.
- Provides a **means** to exhibit Cost Causation of Service.
The *Transactive Energy* Paradigm-shift

TE Norms

- All Parties who provide grid services can recover costs.
- Flexible loads support secure decoupled management (via Cloud Computing IT).
- Creates a financial mechanism to speed clean electrified asset adoption.
- Provides a means to exhibit Cost Causation of Service.
The *Transactive Energy* Paradigm-shift

TE Norms

- All Parties who provide grid services can recover costs.
- Flexible loads support secure decoupled management (via Cloud Computing IT).
- Creates a financial mechanism to speed clean electrified asset adoption.
- Provides a means to exhibit Cost Causation of Service.

“Cost Causation of Service” Recovery Methodology

- Distribution Systems
- Transmission Systems
- Generation Entities
- Customer
The *Transactive Energy* Paradigm-shift

TE Norms

- All Parties who provide grid services can recover costs.
- Flexible loads **support** secure decoupled management *(via Cloud Computing IT).*
- Creates a financial mechanism to speed clean electrified asset adoption.
- Provides a means to exhibit Cost Causation of Service.
The Transactive Energy Paradigm-shift

TE Norms

- All Parties who provide grid services can recover costs.
- Flexible loads support secure decoupled management (via Cloud Computing IT).
- Creates a financial mechanism to speed clean electrified asset adoption.
- Provides a means to exhibit Cost Causation of Service.

“Cost Causation of Service” Recovery Methodology

- Forward Tenders
- Forward Transactions
- Grid Conditions
- Grid Upgrades
- Distribution Systems
- Transmission Systems
- Generation Entities

Retail Automated Transactive Energy System (RATES™)

Market Participant
Customer’s Facilities and Devices
Transactive Energy Architecture

Retail customer, prosumer, distributed generation and storage Facilities

Device
TeMix Agent™
Device Interface

Device
TeMix Agent™
Device Interface

Device
TeMix Agent™

Device
TeMix Agent™

Meter

Facility Service Interface

Tenders & Transactions

Retail Automated Transactive Energy System (RATES™)
(“price and settlement machine”)

Device Interface

Device Interface

Device Interface

Device Interface

Distribution Operator (DO)
Service Interface
DO operated by IOU, POU & Microgrid Distribution Provider

Load Serving Entity (LSE)
Service Interface
LSE operated by IOU, POU, CCA & Microgrid Distribution Provider

Independent System Operator (ISO) Service Interface
ISO API
ISO/ RTO in N.A.

Generation Service Interface
Wholesale Parties
Bilateral Forwards & Futures

APIs

APIs

APIs
Transactive Energy Architecture

Retail customer, prosumer, distributed generation and storage Facilities

Device Interface

Device
TeMix Agent™

Device Interface

Device
TeMix Agent™

Device Interface

Device
TeMix Agent™

Meter

Device Interface

Retail Automated Transactive Energy System (RATES™)
("price and settlement machine")

Tenders & Transactions

APIs

Supports Unlimited Platforms

Distribution Operator (DO)
Service Interface

DO operated by IOU, POU & Microgrid Distribution Provider

Load Serving Entity (LSE)
Service Interface

LSE operated by IOU, POU, CCA & Microgrid Distribution Provider

Independent System Operator (ISO) Service Interface

ISO API

ISO / RTO in N.A.

Generation Service Interface

Wholesale Parties

Bilateral Forwards & Futures

10/1/2022
Retail customer, prosumer, distributed generation and storage Facilities

Device
TeMix Agent™
Device Interface

Meter

Retail Automated Transactive Energy System (RATES™)
(“price and settlement machine”)

Distribution Operator (DO) Service Interface
DO operated by IOU, POU & Microgrid Distribution Provider

Load Serving Entity (LSE) Service Interface
LSE operated by IOU, POU, CCA & Microgrid Distribution Provider

Independent System Operator (ISO) Service Interface
ISO API
ISO/ RTO in N.A.

Generation Service Interface
Wholesale Parties
Bilateral Forwards & Futures

Supports Unlimited Numbers of Facilities and Devices

Supports Unlimited Platforms

Tenders & Transactions

APIs
Transactive Energy Architecture

Retail Automated Transactive Energy System (RATES™) ("price and settlement machine")

Supports Unlimited Numbers of Facilities and Devices

Retail customer, prosumer, distributed generation and storage Facilities

Device
TeMix Agent™
Device Interface

Meter
Facility Service Interface

Tenders & Transactions

Device Interface

DO operated by IOU, POU & Microgrid Distribution Provider

Load Serving Entity (LSE) Service Interface
LSE operated by IOU, POU, CCA & Microgrid Distribution Provider

Independent System Operator (ISO) Service Interface
ISO API
ISO/ RTO in N.A.

Generation Service Interface
Wholesale Parties
Bilateral Forwards & Futures

Peer-to-Peer Supported

Supports Unlimited Platforms
BENEFITS OF TRANSACTIVE ENERGY

1. Compensates *all* Parties who provide grid services
2. Creates a financial incentive mechanism to speed flexible load and disaggregated *(renewable)* supply adoption
3. Has *no* technology scaling limitations
4. Reduces overall system costs for all stakeholders:
 - Absorbs Stranded Asset costs
 - Maintains low-income discounts
5. Uses short-run grid conditions to determine the recovery price and *a yearly subscription hedges bill volatility*
6. **TE supports:**
 - a phased implementation approach, unique to each service territory, by circuit or by flexible device-type (e.g., EVs, Storage, etc.)
 - unique configurations to meet each State’s energy goals
 - Opt-in or Opt-out design considerations
--Thank you for your attention--

Happy to Answer Any Questions?

Name: Stephen MacDonald
Title: Managing Director of Business Development
Contact: Stephen.MacDonald@temix.com 360.773.2781